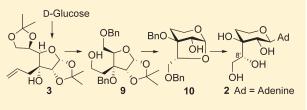
Synthesis of an Adenine Nucleoside Containing the (8'R) Epimeric Carbohydrate Core of Amipurimycin and Its Biological Study


Rajendra S. Mane,^{†,⊥} Sougata Ghosh,[‡] Balu A. Chopade,[‡] Oliver Reiser,[§] and Dilip D. Dhavale^{*,†}

[†]Department of Chemistry, Garware Research Centre, and [‡]Institute of Bioinformatics and Biotechnology, University of Pune, Pune 411 007, India

[§]Institut für Organische Chemie, Universität Regensburg, Universitätstrasse 31, 93053 Regensburg, Germany

Supporting Information

ABSTRACT: The (8'*R*) epimeric carbohydrate core **2** of amipurimycin was synthesized from D-glucose derived allylic alcohol **3** in 11 steps and 13% overall yield. The key steps involve an acid-catalyzed acetonide ring opening of **9** with concomitant formation of an unprecedented pyranose ring skeleton to give 2,7-dioxabicyclo-[3.2.1]octane **10**. The α -orientation of the furan ring in **10** readily allows the stereoselective β -glycosylation and opening of the furanose

ring that on removal of protecting groups affords the pyranosyl adenine nucleoside **2**. The antifungal and anticancer activities of **2** were studied.

The peptidyl nucleoside antibiotic amipurimycin 1 (Figure 1), isolated from Streptomyces novoguineensis sp. nov., shows activity against Pyricularia oryzae, a causative agent for rice blast disease.¹ On the basis of the chemical degradation, Goto et al.² have assigned the primary structure of amipurimycin that includes (a) a unique carbohydrate ring skeleton having a quaternary center at C-3' bearing a hydroxy group and a branched 1,2-dihydroxyethyl side chain, (b) a glycosidic β -linked purine nucleobase at the anomeric carbon, and (c) an amino acid at C-5' attached at its N-terminus to cis-pentacin with undefined absolute configurations at C-6' and in the aminocyclopentane ring.³ Different strategies for the synthesis of pyranosyl sugar cores of amipurimycin with/without C-3' side chain, nucleobase, and peptidyl region at C-6' are known.⁴ As a part of our continuing efforts in the sugar chemistry,⁵ we are now reporting the synthesis of the hitherto unknown (8'R) epimeric pyranosyl adenine nucleoside analogue 2, representing a carbohydrate core of amipurimycin with C-3' dihydroxyethyl side chain, and the study of its antifungal and anticancer activity.

Our retrosynthetic analysis (Scheme 1) suggested that acetylated 2,7-dioxabicyclo[3.2.1]octane **A** would allow the stereoselective β -glycosylation with concomitant opening of the furan ring to give pyranosyl nucleoside **2**. We envisaged the formation of the bridged bicyclic system **A** upon opening of the 1,2acetonide functionality in **B** under acidic conditions, followed by addition of the alkoxy side chain at C-3 to the in situ generated oxocarbenium ion intermediate. Intermediate **B** could be obtained from the D-glucose derived homoallylic alcohol **3** by dihydroxylation, oxidation, and reduction protocol.

As shown in Scheme 2, D-glucose was converted to the known alcohol **3** having a well-defined quaternary center and requisite hydroxyl and allyl groups.⁶ Selective 5,6-acetonide deprotection

in 3 using 30% $HClO_4$ in THF gave triol 4, which on treatment with NaIO₄ afforded aldehyde 5. Reduction of aldehyde functionality in 5 with NaBH₄ gave diol 6, which on protection using benzyl bromide and sodium hydroxide afforded dibenzylated product 7.⁷ Dihydroxylation of the double bond in 7 using $K_2OsO_4 \cdot 2H_2O$ (5 mol %) and N-methylmorpholine-N-oxide (NMO) as co-oxidant followed by oxidative cleavage of the intermediate diol with NaIO₄ gave aldehyde 8. Reduction of 8 using NaBH₄ followed by hydrolysis of 1,2-acetonide group in 9 with TFA/water (3:1) provided 10 with the desired 2,7dioxabicyclo [3.2.1] octane framework as a single product (overall 34% yield from 3). Acetylation of 10 using Ac₂O and pyridine gave monoacetyl derivative 11. The chemical shift assignments and coupling constant values in the ¹H NMR of 11 were obtained from the decoupling experiments. In the ¹H NMR spectrum of 11, the H-1 and H-2 protons appeared as two singlets at δ 5.26 and δ 4.95, respectively. The absence of vicinal coupling constant between H-1 and H-2 requires the dihedral angle between these protons to be approximately 90°. As the absolute configuration (R) at the C-2 in 9 is retained in the bicyclic system 10, the H-2 was given the axial position, and therefore the H-1 was assigned the equatorial orientation. This is in agreement with the attack of primary hydroxyl side chain at C-3 from the β -face forcing the H-1 into the equatorial position. The little twist in the chair conformation, due to the bridged system, arranges the dihedral angle between the H-1 and H-2 close to 90° accounting for the absence of a coupling constant.

The formation of anomeric anhydro sugar **10** can be explained as follows. Under acidic conditions, opening of the 1,2-acetonide

Received: November 3, 2010 Published: March 07, 2011

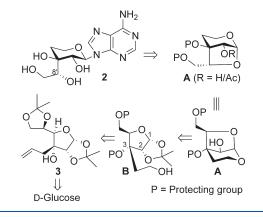
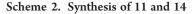
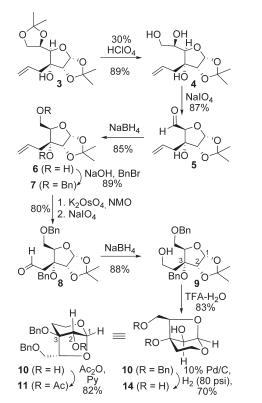



Figure 1. Structures of amipurimycin 1, *cis*-pentacin, and pyranosyl nucleoside 2.

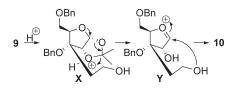

Scheme 1. Retrosynthesis of 2

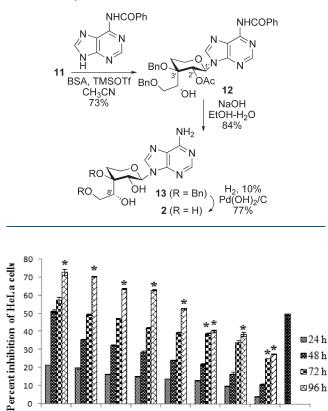


functionality in 9 results in the generation of an oxocarbenium ion Y (Scheme 3), which could be attacked either reversibly by water to give rise to a hemiacetal or irreversibly by the primary alcohol to yield **10**. We suggest that the attack of the primary alcohol to the C-1 position of the oxocarbenium ion Y in an intramolecular and irreversible manner gives rise to a stable pyranose ring shifting the equilibrium in favor of the bridged bicyclic system **10**.

In the next step, the acetyl derivative **11** was glycosylated using a protocol developed by Zou and Robins⁸ (Scheme 4). This onepot process involves the stereoselective formation of the β oriented adenine nucleoside with concomitant opening of the furan ring unmasking the 1,2-dihydroxyethyl side chain to give **12**. The large coupling constant between the H-1' and H-2' (J =8.4 Hz) in the ¹H NMR spectrum of **12** indicated their diaxial orientation, confirming the stereoselective opening of the bridged system by the attack of the adenine nucleobase from the β -face, which is being assisted either by the α -orientated furanose ring at C-3' or by the acetoxy group at C-2'.

In the final steps, hydrolysis of the acetyl and *N*-benzoyl protecting groups in **12** using 1 N NaOH yielded nucleoside **13** in good yield. Hydrogenation of **13** with 10% Pd/C at 80 psi in methanol at room temperature for 12 h unexpectedly afforded compound **14** (Scheme 2) and not the desired pyranosyl nucleoside **2**. This one-pot three-step process involves cleavage of the benzyl groups and restoration of the bridged bicyclic system **14** with concurrent cleavage of the glycosidic bond.⁹ To confirm the




structure of **14**, it was alternatively obtained from the previously synthesized **10** by hydrogenation (10% Pd/C, 80 psi, methanol) (Scheme 2). Alternatively, hydrogenation of **13** with 10% Pd- $(OH)_2$ in methanol under balloon pressure afforded the fully deprotected pyranosyl nucleoside **2** in 77% yield.

The antifungal activity of the pyranosyl nucleoside 2 against seven different pathogenic fungi, Candida tropicalis, Candida albicans, Fusarium oxysporum, Phoma exigua, Aspergillus oryzae, Helminthosporium graminium, Trichoderma resei, and Cladosporium herbarum, was determined. Nystatin, a known antifungal drug, was used as reference.¹⁰ Compound 2 did not exhibit significant antifungal activity against any of the fungal pathogens as compared to Nystatin, pointing toward the cis-pentacin core as the active principle for the antifungal activity found in 1. Indeed, *cis*-pentacin has pronounced antifungal activity³ and has been an important lead structure for the development of novel antifungal agents. The in vitro cytotoxicity of the pyranosyl nucleoside 2 against HeLa (human epithelial cervical cancer) cell lines was determined at a concentration range of $2.5-100 \,\mu\text{M}$ at different times (24-96 h).¹¹ The 3-(4,5-dimethyl-thiazol-2-yl)-2,5-diphenyl-tetrazolium bromide (MTT) colorimetric assay was used to determine growth inhibition¹² and percentage of inhibition was calculated and statistically analyzed.^{5a} As shown in Figure 2, compound 2 exhibited maximum activity during 96 h, highest being 72.8 \pm 1.7% at 100 μ M. Our results were compared with the Mitomycin C, a known anticancer drug as standard reference, which showed 50% inhibition at 5 μ M. As compound 2 showed 52.63% inhibition at 20 μ M, it was found to be four times less active than the Mitomvcin C.

In conclusion, we have exploited the carbon skeleton of Dglucose to construct the pyranose ring skeleton with a C-3 Scheme 3. Formation of 10

Scheme 4. Synthesis of 2

MitonycinC 2 Concentration (µM)

5

0

Figure 2. Anti-proliferative activity of compound 2 against HeLa cells incubated with different concentrations at different times (24-96 h). The data are expressed as a percentage of the control MTT reduction (always taken as 100%) and represent the average \pm SEM (n = 3). * denotes more significant value (P < 0.05).¹³

dihydroxyethyl side chain. A unique feature of our strategy is (a) the acid-catalyzed closing of the pyran ring utilizing a hydroxyethyl residue of the sugar furanose ring in 9 to get the bicyclic ring system 10 and (b) β -selective opening of the sugar furanose ring in 10 with adenine nucleobase, giving the (8'R) epimeric carbohydrate core 2 of amipurimycin. The pyranosyl adenine nucleoside 2 showed potent anticancer activity against HeLa cells.

EXPERIMENTAL SECTION

0

100

2

Ø

0

(1S,5R,6R,8R)-5-O-Benzyl-6-benzyloxymethyl-8-hydroxy-2,7-dioxabicyclo[3.2.1]octane (10)¹⁴. A solution of 9 (0.40 g, 0.94 mmol) in TFA-water (5 mL, 3:1) was stirred for 3 h at 0 °C to rt. TFA was coevaporated with toluene. Purification by column chromatography (n-hexane/ethyl acetate = 7/3) furnished 10 (0.30 g, 83%) as a viscous liquid: $R_f 0.61$ (*n*-hexane/ethyl acetate = 3/2); $[\alpha]^{25}_{D}$ +8.1 (*c* 0.5, CHCl₃); IR (CHCl₃) 3500–3000 (br) cm⁻¹; ¹H NMR (300 MHz, $CDCl_3$) δ 1.60 (br s, 1H), 1.77 (dd, J = 13.2, 4.8 Hz, 1H), 2.05–2.20 (m, 1H), 3.75–3.96 (m, 5H), 4.40–4.45 (m, 1H), 4.48 (d, J = 11.4 Hz, 1H), 4.58 (ABq, J = 12.0 Hz, 2H), 4.63 (d, J = 11.4 Hz, 1H), 5.24 (s, 1H), 7.20-7.40 (m, 10H); ¹³C NMR (75 MHz, CDCl₃) δ 29.3, 59.0, 66.7, 67.5, 73.3, 80.0, 80.1, 81.2, 102.6, 127.4 (strong), 127.6 (strong), 127.7 (strong), 128.0 (strong), 128.4 (strong), 128.6 (strong), 137.8, 137.9. Anal. Calcd for C₂₁H₂₄O₅: C, 70.77; H, 6.79. Found: C, 70.92; H, 6.93.

(1S,5R,6R,8R)-5-O-Benzyl-6-benzyloxymethyl-8-acetoxy-**2,7-dioxabicyclo**[**3.2.1**]**octane** (**11**)¹⁴. To a solution of **10** (0.20 g, 0.56 mmol) in pyridine (2 mL) was added Ac₂O (0.10 mL, 1.12 mmol), and the mixture was stirred for 6 h. After concentration, residue was purified by column chromatography (*n*-hexane/ethyl acetate = 9/1) to give 11 (0.18 g, 82%) as a solid: mp 72–74 °C; R_f 0.81 (*n*-hexane/ethyl acetate = 7/3; $[\alpha]_{D}^{25}$ +15.5 (*c* 1.4, CHCl₃); IR (CHCl₃) 1739 cm⁻ ¹H NMR (300 MHz, CDCl₃) δ 1.76 (dd, J = 12.9, 4.8 Hz, 1H), 2.10 (s, 3H), 2.24-2.38 (m, 1H), 3.70-4.00 (m, 4H), 4.42-4.48 (m, 1H), 4.43 (ABq, J = 11.1, 2H), 4.56 (ABq, J = 12.3, 2H), 4.95 (s, 1H), 5.26 (s, 1H), 7.18-7.38 (m, 10H); ¹³C NMR (75 MHz, CDCl₃) δ 20.7, 29.8, 58.8, 67.0, 67.2, 73.2, 76.0, 80.0, 80.6, 101.1, 127.2 (strong), 127.5 (strong), 127.6 (strong), 128.2 (strong), 137.7, 169.8. Anal. Calcd for C₂₃H₂₆O₆: C, 69.33; H, 6.58. Found: C, 69.58; H, 6.76.

Pyranosyl Nucleoside (12). N,O-Bis(trimethylsilyl)acetamide (0.74 mL, 3.01 mmol) was added to a solution of N-benzoyl adenine (0.25 g, 1.05 mmol) in dry acetonitrile (4 mL), the reaction mixture was stirred for 20 min and cooled to 0 °C, a solution of 11 (0.40 g, 1.00 mmol) in dry acetonitrile (3 mL) and TMSOTf (0.19 mL, 1.00 mmol) was added dropwise at 0 °C, and the resulting solution was stirred for 10 h at 50 °C. The reaction mixture was cooled to 0 °C, and chloroform (10 mL) and then saturated aq NaHCO₃ solution (5 mL) were added. The reaction mixture was extracted with chloroform (20 mL \times 3), and the combined organic layers were extracted with brine and concentrated. Purification by column chromatography (*n*-hexane/ethyl acetate = 1/4) gave nucleoside **12** (0.47 g, 73%) as a viscous oil: R_f 0.56 (*n*-hexane/ ethyl acetate = 1/9); $[\alpha]^{25}_{D}$ +12.2 (*c* 0.2, CHCl₃); IR (CHCl₃) 3300 (br), 1745 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ 1.77 (s, 3H), 1.80-2.00 (br s, 1H), 2.10-2.23 (m, 1H), 2.23-2.35 (m, 1H), 3.55 (dd, J = 9.9, 6.3 Hz, 1H), 3.90 (dd, J = 9.9, 2.4 Hz, 1H), 3.95-4.07 (m, 1H), 4.28–4.65 (m, 6H), 5.76 (d, J = 8.4 Hz, 1H), 6.45 (d, J = 8.4 Hz, 1H), 7.08–7.38 (m, 10H), 7.42–7.67 (m, 3H), 8.02 (d, J = 7.2 Hz, 2H), 8.25 (s, 1H), 8.82 (s, 1H), 9.11 (br s, 1H) ; ¹³C NMR (75 MHz, CDCl₃) δ 20.4, 30.0, 63.6, 64.5, 71.6, 72.7, 73.3, 75.0, 77.5, 81.4, 122.4, 127.5 (strong), 127.6 (strong), 127.7 (strong), 128.3 (strong), 128.7 (strong), 132.6, 133.7, 137.8, 141.1, 149.3, 151.8, 152.8, 164.5, 169.2. Anal. Calcd for C35H35N5O7: C, 65.92; H, 5.53. Found: C, 66.07; H, 5.66.

Pyranosyl Nucleoside (13). A solution of nucleoside 12 (0.5 g, 0.78 mmol) in ethanol-water (7:3, 10 mL) and NaOH (0.12 g, 3.13 mmol) was stirred at room temperature. After 24 h, the reaction mixture was neutralized with 1 N HCl, and the volume of the reaction mixture was reduced to half by evaporation at reduced pressure. The mixture was extracted with chloroform (10 mL \times 3), and the combined organic layers were concentrated. Purification of the residue by column chromatography (*n*-hexane/ethyl acetate = 1/9) gave nucleoside **13** (0.32 g, 84%) as a white solid: mp 94–96 °C; $R_f 0.38$ (ethyl acetate); $[\alpha]^{24}$ °n -36.7 (c 0.5, CHCl₃); IR 3650-3050 (br) (CHCl₃) cm⁻¹; ¹H NMR $(300 \text{ MHz}, \text{CDCl}_3) \delta 1.95 - 2.18 \text{ (m, 1H)}, 2.20 - 2.38 \text{ (br d, } J = 12.9 \text{ Hz},$ 1H), 3.68-3.82 (m, 1H), 3.90-4.10 (m, 2H), 4.22-4.40 (m, 1H), 4.48-4.72 (m, 4H), 4.75-4.94 (m, 2H), 5.40-6.00 (br s, 2H), 6.12 (br s, 2H), 6.29 (d, J = 8.7 Hz, 1H), 7.18-7.38 (m, 10H), 7.79 (s, 1H), 8.12 (s, 1H); ¹³C NMR (75 MHz, CDCl₃) δ 31.6, 64.0, 65.3, 70.0, 72.1, 73.3, 73.9, 78.1, 84.0, 118.3, 127.1 (strong), 127.3, 127.7, 127.8 (strong), 128.3 (strong), 128.4 (strong), 137.8, 138.8, 139.4, 149.3, 152.8, 154.6. Anal. Calcd for $C_{26}H_{29}N_5O_5$: C, 63.53; H, 5.95. Found: C, 63.79; H, 6.16.

(15,5*R*,6*R*,8*R*)-5,8-Dihydroxy-6-hydroxymethyl-2,7-dioxabicyclo[3.2.1]octane (14)¹⁴. To a solution of 10 (0.50 g, 1.40 mmol) in methanol (15 mL) was added 10% Pd/C (0.20 g), and the solution was hydrogenated at 80 psi for 12 h. The catalyst was filtered off and washed with methanol, and the filtrate was concentrated. Purification by column chromatography (methanol/chloroform = 3/2) furnished 14 (0.17 g, 70%) as a viscous liquid: R_f 0.31 (methanol); [α]²⁵_D +6.9 (*c*0.2, MeOH); IR (neat) 3500–2900 (br) cm⁻¹; ¹H NMR (300 MHz, D₂O) δ 1.88–2.08 (m, 2H), 3.72 (s, 1H), 3.84–3.95 (m, 3H), 4.03 (dd, *J* = 12.3, 9.0 Hz, 1H), 4.22 (br d, *J* = 8.4 Hz, 1H), 5.28 (s, 1H).; ¹³C NMR (75 MHz, D₂O) δ 31.6, 58.6, 59.3, 75.2, 77.8, 80.5, 101.9. Anal. Calcd for C₇H₁₂O₅: C, 47.72; H, 6.87. Found: C, 47.97; H, 6.96.

Pyranosyl Nucleoside (2). To a stirred solution of nucleoside 13 (0.4 g, 0.80 mmol) in dry methanol (10 mL) was added 10% Pd(OH)₂ on carbon (0.05 g). The reaction mixture was flushed with hydrogen three times and stirred under a hydrogen atmosphere at balloon pressure. After 12 h, the catalyst was filtered through Celite, the filtrate was evaporated under reduced pressure, and the residue was purified by column chromatography (methanol/chloroform = 4/1) to give nucleoside 2 (0.18 g, 77%) as a viscous liquid: R_f 0.15 (methanol); $[\alpha]^{25}_{D}$ -13.7 (c 0.3, H₂O); IR (neat) 3600-2900 (br) cm⁻¹; ¹H NMR (300 MHz, D₂O) δ 1.94–2.05 (m, 1H), 2.36 (br d, J = 14.4 Hz, 1H), 3.78 (dd, J = 11.7, 8.1 Hz, 1H), 3.98–4.10 (m, 2H), 4.15 (br d, J = 10.8 Hz, 1H), 4.20 (dd, *J* = 8.1, 2.4 Hz, 1H), 4.32 (d, *J* = 9.3 Hz, 1H), 6.16 (d, *J* = 9.3 Hz, 1H), 8.21 (s, 1H), 8.38 (s, 1H); 13 C NMR (75 MHz, D₂O) δ 35.6, 65.2, 66.1, 74.7, 76.6, 77.8, 85.5, 121.0, 143.1, 151.3, 155.2, 158.0. Anal. Calcd for C12H17N5O5: C, 46.30; H, 5.50. Found: C, 46.57; H, 5.95.

ASSOCIATED CONTENT

Supporting Information. General experimental methods, experimental procedure, spectral and analytical data for compounds 4, 5, 6, 7, 8, and 9 and copies of ¹H and ¹³C NMR spectrum of compounds 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14 and 2. This material is available free of charge via the Internet at http:// pubs.acs.org.

AUTHOR INFORMATION

Corresponding Author

*E-mail: ddd@chem.unipune.ac.in.

DISCLOSURE

[⊥]Part of this work was carried out with Prof. Oliver Reiser, Institut fur Organische Chemie, Universität Regensburg, 93053 Regensburg, Germany under the INDIGO programme.

ACKNOWLEDGMENT

We are grateful to Prof. M. S. Wadia for helpful discussions. R. S.M. is thankful to the UGC, New Delhi and the DAAD/BASF (INDIGO programme, Germany) for the fellowships and CSIR Project No. 01(2343)/09/EMR-II) for financial assistance.

REFERENCES

(1) (a) Iwasa, T.; Kishi, T.; Matsuura, K.; Wakae, O. J. Antibiot. 1977, 30, 1–10. (b) Harada, S.; Kishi, T. J. Antibiot. 1977, 30, 11–16.

(2) (a) Goto, T.; Toya, Y.; Ohgi, T.; Kondo, T. Tetrahedron Lett. 1982, 23, 1271-1274.

(3) (a) Iwamoto, T.; Tsujii, E.; Ezaki, M.; Fujie, A.; Hashimoto, S.; Okuhara, M.; Kohsaka, M.; Imanaka, H.; Kawabata, K. *J. Antibiot.* **1990**, *43*, 1–7. (b) Kawabata, K.; Inamoto, Y.; Sakane, K.; Iwamoto, T.; Hashimoto, S. *J. Antibiot.* **1990**, *43*, 513–518.

(4) (a) Stauffer, C. S.; Datta, A. J. Org. Chem. 2008, 73, 4166–4174.
(b) Xue, J.; Guo, Z. J. Carbohydr. Chem. 2007, 27 (2), 51–69. (c) Bhaket, P.; Stauffer, C. S.; Datta, A. J. Org. Chem. 2004, 69, 8594–8601. (d) Garner, P.; Yoo, J. U.; Sarabu, R.; Kennedy, V. O.; Youngs, W. J. Tetrahedron 1998, 54, 9303–9316. (e) Czernecki, S.; Franco, S.; Valery, J.-M. J. Org. Chem. 1997, 62, 4845–4847. (f) Czernecki, S.; Valery, J.-M.; Wilkens, R. Bull. Chem. Soc. Jpn. 1996, 69, 1347–1351. (g) Rauter, A. P.; Fernandes, A. C.; Czernecki, S.; Valery, J.-M. J. Org. Chem. 1996, 61, 3594–3598. (h) Casiraghi, G.; Colombo, L.; Rassu, G.; Spanu, P. J. Org. Chem. 1991, 56, 6523–6527. (i) Hara, K.; Fujimoto, H.; Sato, K. I.; Hashimoto, H.; Yoshimura, J. Carbohydr. Res. 1987, 159, 65–79.

(5) (a) Sanap, S. P.; Ghosh, S.; Jabgunde, A. M.; Pinjari, R. V.; Gejji,
S. P.; Singh, S.; Chopade, B. A.; Dhavale, D. D. Org. Biomol. Chem. 2010,
14, 3307–3315. (b) Jadhav, V. H.; Bande, O. P.; Pinjari, R. V.; Gejji, S. P.;
Puranik, V. G.; Dhavale, D. D. J. Org. Chem. 2009, 74, 6486–6494. (c)
Bhujbal, N. N.; Bande, O. P.; Dhavale, D. D. Carbohydr. Res. 2009,
344, 734–738. (d) Bande, O. P.; Jadhav, V. H.; Puranik, V. G.; Dhavale,
D. D. Synlett 2009, 12, 1959–1963. (e) Bande, O. P.; Jadhav, V. H.;
Puranik, V. G.; Dhavale, D. D. Tetrahedron lett 2009, 50, 6906–6908.

(6) (a) Mane, R. S.; Ajish Kumar, K. S.; Dhavale, D. D. J. Org. Chem.
2008, 73, 3284–3287. (b) Hotha, S.; Maurya, S. K.; Gurjar, M. K. Tetrahedron Lett. 2005, 46, 5329–5332.

(7) Wengel et al. have reported the synthesis of compound 7 using different methodology; see: Nielsen, P.; Pfundheller, H. M.; Olsen, C.; Wengel, J. J. Chem. Soc., Perkin Trans. 1 **199**7, 3423–3433.

(8) Zou, R.; Robins, M. J. Can. J. Chem. 1987, 65, 1436-1437.

(9) (a) Analogous results were obtained with 10% Pd/C or 10% Pd(OH)₂, ammonium formate, methanol reflux conditions. (b) Wengel et al. have also observed glycosidic bond cleavage under various debenzylation methods (20% Pd(OH)₂)/C, H₂, ethanol; 10% Pd/C, H₂, methanol; 10% Pd/C, 1,4-cyclohexadiene, methanol; BCl₃, dichloromethane, hexane; 20% Pd(OH)₂, ammonium formate, methanol; BBr₃, dichloromethane; sodium, ethanol; CrO₃/CH₃COOH; iodotrimethylsilane); see: Singh, S. K.; Kumar, R.; Wengel, J. J. Org. Chem. **1998**, 63, 6078–6079.

(10) (a) Gazim, Z. C.; Rezende, C. M.; Fraga, S. R.; Svidzinski,
T. I. E.; Cortez, D. A. G. Braz. J. Microbiol. 2008, 39, 61–63. (b)
Kumbhar, A. S.; Padhye, S. B.; Saraf, A. P.; Mahajani, H. B.; Chopade,
B. A.; West, D. K. Biometals 1991, 4, 141–143.

(11) (a) Liu, Y.; Xing, H.; Han, X.; Shi, X.; Liang, F.; Cheng, G.; Lu, Y.; Ma, D. J. Huazhong Univ. Sci. Technolog. Med. Sci. 2008, 28, 197–199.

(12) Mosmann, T. J. Immunol. Meth. 1983, 65, 55-63.

(13) The general procedure and statistical analysis for anticancer assay is discussed in Supporting Information.

(14) The names of the sugars **10**, **11**, and **14** are given according to the von Baeyer nomenclature; however, the assignments of the protons and carbons in the figures follow standard carbohydrate nomenclature.